Core Course CC-111 Mathematical Foundation of Computer Science

Course Introduction:

This course introduces students to become reasonably good at problem solving and algorithm development. Students also enhance their ability to think logically and mathematically.

Objectives:

The objective of this course is to present the foundations of many basic computer related concepts and provide a coherent development to the students for the courses like Fundamentals of Computer Organization, RDBMS, Data Structures, Analysis of Algorithms, Artificial Intelligence, Computer Graphics and others.

No. of Credits: 3

Theory Sessions per week: 4 Teaching Hours: 40 hours

UNIT	TOPICS / SUBTOPICS	TEACHING HOURS
1	Group Theory	10 hours
	Binary Operations	
	Algebraic Structure	2 hrs
	Group	
	Order of a Group	
	Abelian Group	4 hrs
	Cyclic Group	
	Order of an element	
	Sub-group	
	 Lagrange's Theorem (with out proof) 	4 hrs
	Permutation group	
	• $\langle Zn, +n \rangle & \langle Zp, *p \rangle$	
2	Relation and Ordering	10 hours
	 Introduction to relations 	2 hrs
	 Binary relation on a set 	
	 Total no. of distinct Relation from a set A to B 	
	Graph of relations and relation matrix	
	 Property of relations 	4 hrs
	 Equivalence relations 	
	 Equivalence classes (sets) 	
	 Partition of a set 	
	 Partial ordering and partial ordered set 	
	 Comparable elements 	4 hrs
	Chain	
	 Cover of an element 	
	Hasse diagram	
	 Least, Greatest, Maximal, Minimal elements 	
	 Upper and lower bounds of Posets 	

3	Lattice and Boolean algebra	10 hours
	Introduction to lattice	2 hrs
	 Definition of lattice as a Posets 	
	 Properties of lattice 	
	• Sub-lattice	
	Complete lattice	2 hrs
	Bounded lattice	
	Distributive lattice	
	Complemented lattice	
	Definition and important properties of a Boolean algebra	2 hrs
	Sub-Boolean algebra	
	Isomorphic Boolean algebras (graphically)	4 hrs
	 Atoms and anti-atoms 	
	 Boolean expressions and their equivalence 	
	 Min terms and max terms 	
	Canonical forms	
4	Graph theory	10 hours
	 Introduction 	1 hrs
	Abstract definition of Graph and Basic Terminology	
	Simple Graph, Multi Graph	2 hrs
	 Degree of a Vertex 	
	 Types of Graphs 	
	Sub-graph and Isomorphic Graphs	
	Path and Reachability	2 hrs
	Node Base	2 hrs
	Matrix Representation of Graphs	
	Tree and Basic Terminology	3 hrs
	 Binary and Complete Binary Tree 	
	m-ary Tree, Different representations of Tree	

Textbook:

1) Discrete Mathematics

Publisher: Oxford University Press

By Swapankumar Chakaborty, Bikas Kanti Sarkar

Reference Books:

1) Discrete Mathematics

Publisher: Cengage Learning

By D.S. Malik, M.K.Sen

2) Discrete Mathematics & its Application

Publisher: Tata McGraw Hill

By Kenneth H. Rosen,

3) Discrete Mathematics

Publisher: Tata McGraw Hill By J.P. Trembaly, R. Manohar

4) A Text book of the Discrete Mathematics

Publisher: S. Chand Publication By Swapan Kumar, Sarkar

5) Discrete Mathematical Structure (Latest Edition)

Publisher: Prentice Hall of India Pvt. Ltd.

By Bernard Kolman, Robert C Busby, Sharon Roass